分部积分法怎么用???-灵析社区

强哥喝假酒

![image.png](https://wmprod.oss-cn-shanghai.aliyuncs.com/images/20250103/fe864eab95139d7f64808c528fea19ad.png) 求大佬说下这个结果是怎么算出来的? 分部积分法我用了 没算出来。。。 上式积分号前面还有个1/Π. 这道题是傅里叶级数的题, 但是这个积分结果我没算出来。

阅读量:18

点赞量:0

问AI
$$ \begin{align} & \int_0^{\pi}(1-x^2)\cos nxdx \\ =& \int_0^{\pi}(1-x^2)\frac{1}{n}d \sin nx \\ =& \frac{1}{n} \left[ \left . (1-x^2)\sin nx \right |_0^{\pi} -\int_0^{\pi}\sin nx d(1-x^2) \right] \\ =& -\frac{1}{n} \int_0^{\pi}\sin nx d(1-x^2) \\ =& -\frac{1}{n} \int_0^{\pi} -2x\sin nx dx \\ =& \frac{2}{n} \int_0^{\pi}x\sin nx dx \\ =& \frac{2}{n} \int_0^{\pi}x(-\frac{1}{n})d\cos nx \\ =& -\frac{2}{n^2} \int_0^{\pi}xd\cos nx \\ =& -\frac{2}{n^2} \left [ \left . x\cos nx \right | _0^{\pi} -\int_0^{\pi}\cos nxdx \right ] \\ =& -\frac{2}{n^2} \left [ \pi\cos n\pi -\int_0^{\pi}\cos nxdx \right ] \\ =& -\frac{2}{n^2} \left [ \pi\cos n\pi -\left . \frac{1}{n}\sin nx \right |_0^{\pi} \right ] \\ =& -\frac{2\pi\cos n\pi}{n^2} \\ =& \frac{2\pi(-1)^{(n+1)}}{n^2} \end{align} $$ 用了两次分部积分法