4. 怎么评估linux系统的网络性能?-灵析社区

秋月无边

性能指标回顾

在评估网络性能前,先来回顾一下衡量网络性能的指标有哪些。

首先, 带宽,表示链路的最大传输速率,单位是 b/s(比特/秒)。在你为服务器选购网卡时,带宽就是最核心的参考指标。常用的带宽有 1000M、10G、40G、100G 等。

第二, 吞吐量,表示没有丢包时的最大数据传输速率,单位通常为 b/s (比特/秒)或者 B/s(字节/秒)。吞吐量受带宽的限制,吞吐量/带宽也就是该网络链路的使用率。

第三, 延时,表示从网络请求发出后,一直到收到远端响应,所需要的时间延迟。这个指标在不同场景中可能会有不同的含义。它可以表示建立连接需要的时间(比如 TCP 握

手延时),或者一个数据包往返所需时间(比如 RTT)。

最后, PPS,是 Packet Per Second(包/秒)的缩写,表示以网络包为单位的传输速率。PPS 通常用来评估网络的转发能力,而基于 Linux 服务器的转发,很容易受到网络包

大小的影响(交换机通常不会受到太大影响,即交换机可以线性转发)。

这四个指标中,带宽跟物理网卡配置是直接关联的。一般来说,网卡确定后,带宽也就确定了(当然,实际带宽会受限于整个网络链路中最小的那个模块)。

另外,你可能在很多地方听说过“网络带宽测试”,这里测试的实际上不是带宽,而是网络吞吐量。Linux 服务器的网络吞吐量一般会比带宽小,而对交换机等专门的网络设备来

说,吞吐量一般会接近带宽。

最后的 PPS,则是以网络包为单位的网络传输速率,通常用在需要大量转发的场景中。而对 TCP 或者 Web 服务来说,更多会用并发连接数和每秒请求数(QPS,Query per

Second)等指标,它们更能反应实际应用程序的性能。

网络基准测试

如何通过性能测试来确定这些指标的基准值。

Linux 网络基于 TCP/IP 协议栈,而不同协议层的行为显然不同。那么,测试之前,应该弄清楚,要评估的网络性能,究竟属于协议栈的哪一层?换句话说,你的应用程序基于

协议栈的哪一层呢?

根据前面学过的 TCP/IP 协议栈的原理,这个问题应该不难回答。比如:

  • 基于 HTTP 或者 HTTPS 的 Web 应用程序,显然属于应用层,需要我们测试 HTTP/HTTPS 的性能;
  • 而对大多数游戏服务器来说,为了支持更大的同时在线人数,通常会基于 TCP 或 UDP ,与客户端进行交互,这时就需要测试 TCP/UDP 的性能;
  • 还有一些场景,是把 Linux 作为一个软交换机或者路由器来用的。这种情况下,你更关注网络包的处理能力(即 PPS),重点关注网络层的转发性能。

接下来,从下往上,了解不同协议层的网络性能测试方法。不过要注意,低层协议是其上的各层网络协议的基础。自然,低层协议的性能,也就决定了高层的网络性能。

注意,以下所有的测试方法,都需要两台 Linux 虚拟机。其中一台,可以当作待测试的目标机器;而另一台,则可以当作正在运行网络服务的客户端,用来运行测试工具。

各协议层的性能测试

转发性能

首先来看,网络接口层和网络层,它们主要负责网络包的封装、寻址、路由以及发送和接收。在这两个网络协议层中,每秒可处理的网络包数 PPS,就是最重要的性能指标。特

别是 64B 小包的处理能力,值得我们特别关注(小包更能体现pps的性能)。那么,如何来测试网络包的处理能力呢?

Linux 内核自带的高性能网络测试工具 pktgen。pktgen 支持丰富的自定义选项,方便你根据实际需要构造所需网络包,从而更准确地测试出目标服务器的性能。

不过,在 Linux 系统中,并不能直接找到 pktgen 命令。因为 pktgen 作为一个内核线程来运行,需要你加载 pktgen 内核模块后,再通过 /proc 文件系统来交互。下面就是

pktgen 启动的两个内核线程和 /proc 文件系统的交互文件:

$ modprobe pktgen
$ ps -ef | grep pktgen | grep -v grep
root     26384     2  0 06:17 ?        00:00:00 [kpktgend_0]
root     26385     2  0 06:17 ?        00:00:00 [kpktgend_1]
$ ls /proc/net/pktgen/
kpktgend_0  kpktgend_1  pgctrl

pktgen 在每个 CPU 上启动一个内核线程,并可以通过 /proc/net/pktgen 下面的同名文件,跟这些线程交互;而 pgctrl 则主要用来控制这次测试的开启和停止。

如果 modprobe 命令执行失败,说明你的内核没有配置 CONFIG_NET_PKTGEN 选项。这就需要你配置 pktgen 内核模块(即 CONFIG_NET_PKTGEN=m)后,重新编译

内核,才可以使用。

在使用 pktgen 测试网络性能时,需要先给每个内核线程 kpktgend_X 以及测试网卡,配置 pktgen 选项,然后再通过 pgctrl 启动测试。

以发包测试为例,假设发包机器使用的网卡是 eth0,而目标机器的 IP 地址为 192.168.0.30,MAC 地址为 11:11:11:11:11:11。

接下来,就是一个发包测试的示例。

# 定义一个工具函数,方便后面配置各种测试选项
function pgset() {
    local result
    echo $1 > $PGDEV

    result=`cat $PGDEV | fgrep "Result: OK:"`
    if [ "$result" = "" ]; then
         cat $PGDEV | fgrep Result:
    fi
}

# 为0号线程绑定eth0网卡
PGDEV=/proc/net/pktgen/kpktgend_0
pgset "rem_device_all"   # 清空网卡绑定
pgset "add_device eth0"  # 添加eth0网卡

# 配置eth0网卡的测试选项
PGDEV=/proc/net/pktgen/eth0
pgset "count 1000000"    # 总发包数量
pgset "delay 5000"       # 不同包之间的发送延迟(单位纳秒)
pgset "clone_skb 0"      # SKB包复制
pgset "pkt_size 64"      # 网络包大小
pgset "dst 192.168.0.30" # 目的IP
pgset "dst_mac 11:11:11:11:11:11"  # 目的MAC

# 启动测试
PGDEV=/proc/net/pktgen/pgctrl
pgset "start"

稍等一会儿,测试完成后,结果可以从 /proc 文件系统中获取。通过下面代码段中的内容,我们可以查看刚才的测试报告:

$ cat /proc/net/pktgen/eth0
Params: count 1000000  min_pkt_size: 64  max_pkt_size: 64
     frags: 0  delay: 0  clone_skb: 0  ifname: eth0
     flows: 0 flowlen: 0
...
Current:
     pkts-sofar: 1000000  errors: 0
     started: 1534853256071us  stopped: 1534861576098us idle: 70673us
...
Result: OK: 8320027(c8249354+d70673) usec, 1000000 (64byte,0frags)
  120191pps 61Mb/sec (61537792bps) errors: 0

测试报告主要分为三个部分:

  • 第一部分的 Params 是测试选项;
  • 第二部分的 Current 是测试进度,其中, packts so far(pkts-sofar)表示已经发送了 100 万个包,也就表明测试已完成。
  • 第三部分的 Result 是测试结果,包含测试所用时间、网络包数量和分片、PPS、吞吐量以及错误数。

根据上面的结果,PPS 为 12 万,吞吐量为 61 Mb/s,没有发生错误。那么,12 万的 PPS 好不好呢?

作为对比,你可以计算一下千兆交换机的 PPS。交换机可以达到线速(满负载时,无差错转发),它的 PPS 就是 1000Mbit 除以以太网帧的大小,即 1000Mbps/((64+20)*8bit)

= 1.5 Mpps(其中,20B 为以太网帧前导和帧间距的大小)。

即使是千兆交换机的 PPS,也可以达到 150 万 PPS,比测试得到的 12 万大多了。所以,看到这个数值你并不用担心,现在的多核服务器和万兆网卡已经很普遍了,稍做优化

就可以达到数百万的 PPS。而且,如果用了 DPDK 或 XDP ,还能达到千万数量级。

TCP/UDP 性能

iperf 和 netperf 都是最常用的网络性能测试工具,测试 TCP 和 UDP 的吞吐量。它们都以客户端和服务器通信的方式,测试一段时间内的平均吞吐量。

接下来,以 iperf 为例,看一下 TCP 性能的测试方法。目前,iperf 的最新版本为 iperf3,可以运行下面的命令来安装:

# Ubuntu
apt-get install iperf3
# CentOS
yum install iperf3

然后,在目标机器上启动 iperf 服务端:

# -s表示启动服务端,-i表示汇报间隔,-p表示监听端口
$ iperf3 -s -i 1 -p 10000

接着,在另一台机器上运行 iperf 客户端,运行测试:

# -c表示启动客户端,192.168.0.30为目标服务器的IP
# -b表示目标带宽(单位是bits/s)
# -t表示测试时间
# -P表示并发数,-p表示目标服务器监听端口
$ iperf3 -c 192.168.0.30 -b 1G -t 15 -P 2 -p 10000

稍等一会儿(15秒)测试结束后,回到目标服务器,查看 iperf 的报告:

[ ID] Interval           Transfer     Bandwidth
...
[SUM]   0.00-15.04  sec  0.00 Bytes  0.00 bits/sec                  sender
[SUM]   0.00-15.04  sec  1.51 GBytes   860 Mbits/sec                  receiver

最后的 SUM 行就是测试的汇总结果,包括测试时间、数据传输量以及带宽等。按照发送和接收,这一部分又分为了 sender 和 receiver 两行。

从测试结果你可以看到,这台机器 TCP 接收的带宽(吞吐量)为 860 Mb/s, 跟目标的 1Gb/s 相比,还是有些差距的。

HTTP 性能

从传输层再往上,到了应用层。有的应用程序,会直接基于 TCP 或 UDP 构建服务。当然,也有大量的应用,基于应用层的协议来构建服务,HTTP 就是最常用的一个应用层协

议。比如,常用的 Apache、Nginx 等各种 Web 服务,都是基于 HTTP。

要测试 HTTP 的性能,也有大量的工具可以使用,比如 ab、webbench 等,都是常用的 HTTP 压力测试工具。其中,ab 是 Apache 自带的 HTTP 压测工具,主要测试 HTTP 服

务的每秒请求数、请求延迟、吞吐量以及请求延迟的分布情况等。

运行下面的命令,你就可以安装 ab 工具:

# Ubuntu
$ apt-get install -y apache2-utils
# CentOS
$ yum install -y httpd-tools

接下来,在目标机器上,使用 Docker 启动一个 Nginx 服务,然后用 ab 来测试它的性能。首先,在目标机器上运行下面的命令:

$ docker run -p 80:80 -itd nginx

而在另一台机器上,运行 ab 命令,测试 Nginx 的性能:

# -c表示并发请求数为1000,-n表示总的请求数为10000
$ ab -c 1000 -n 10000 http://192.168.0.30/
...
Server Software:        nginx/1.15.8
Server Hostname:        192.168.0.30
Server Port:            80

...

Requests per second:    1078.54 [#/sec] (mean)
Time per request:       927.183 [ms] (mean)
Time per request:       0.927 [ms] (mean, across all concurrent requests)
Transfer rate:          890.00 [Kbytes/sec] received

Connection Times (ms)
              min  mean[+/-sd] median   max
Connect:        0   27 152.1      1    1038
Processing:     9  207 843.0     22    9242
Waiting:        8  207 843.0     22    9242
Total:         15  233 857.7     23    9268

Percentage of the requests served within a certain time (ms)
  50%     23
  66%     24
  75%     24
  80%     26
  90%    274
  95%   1195
  98%   2335
  99%   4663
 100%   9268 (longest request)

可以看到,ab 的测试结果分为三个部分,分别是请求汇总、连接时间汇总还有请求延迟汇总。以上面的结果为例,我们具体来看。

在请求汇总部分,可以看到:

  • Requests per second 为 1074;
  • 每个请求的延迟(Time per request)分为两行,第一行的 927 ms 表示平均延迟,包括了线程运行的调度时间和网络请求响应时间,而下一行的 0.927ms ,则表示实际请求的响应时间;
  • Transfer rate 表示吞吐量(BPS)为 890 KB/s。

连接时间汇总部分,则是分别展示了建立连接、请求、等待以及汇总等的各类时间,包括最小、最大、平均以及中值处理时间。

最后的请求延迟汇总部分,则给出了不同时间段内处理请求的百分比,比如, 90% 的请求,都可以在 274ms 内完成。

应用负载性能

当用 iperf 或者 ab 等测试工具,得到 TCP、HTTP 等的性能数据后,这些数据是否就能表示应用程序的实际性能呢?

答案应该是否定的。比如,你的应用程序基于 HTTP 协议,为最终用户提供一个 Web 服务。这时,使用 ab 工具,可以得到某个页面的访问性能,但这个结果跟用户的实际请

求,很可能不一致。因为用户请求往往会附带着各种各种的负载(payload),而这些负载会影响 Web 应用程序内部的处理逻辑,从而影响最终性能。

那么,为了得到应用程序的实际性能,就要求性能工具本身可以模拟用户的请求负载,而iperf、ab 这类工具就无能为力了。幸运的是,我们还可以用 wrk、TCPCopy、Jmeter

或者 LoadRunner 等实现这个目标。

wrk 为例,它是一个 HTTP 性能测试工具,内置了 LuaJIT,方便你根据实际需求,生成所需的请求负载,或者自定义响应的处理方法。

wrk 工具本身不提供 yum 或 apt 的安装方法,需要通过源码编译来安装。比如,可以运行下面的命令,来编译和安装 wrk:

$ https://github.com/wg/wrk
$ cd wrk
$ apt-get install build-essential -y
$ make
$ sudo cp wrk /usr/local/bin/

wrk 的命令行参数比较简单。比如,我们可以用 wrk ,来重新测一下前面已经启动的 Nginx 的性能。

# -c表示并发连接数1000,-t表示线程数为2
$ wrk -c 1000 -t 2 http://192.168.0.30/
Running 10s test @ http://192.168.0.30/
  2 threads and 1000 connections
  Thread Stats   Avg      Stdev     Max   +/- Stdev
    Latency    65.83ms  174.06ms   1.99s    95.85%
    Req/Sec     4.87k   628.73     6.78k    69.00%
  96954 requests in 10.06s, 78.59MB read
  Socket errors: connect 0, read 0, write 0, timeout 179
Requests/sec:   9641.31
Transfer/sec:      7.82MB

这里使用 2 个线程、并发 1000 连接,重新测试了 Nginx 的性能。你可以看到,每秒请求数为 9641,吞吐量为 7.82MB,平均延迟为 65ms,比前面 ab 的测试结果要好很多。

这也说明,性能工具本身的性能,对性能测试也是至关重要的。不合适的性能工具,并不能准确测出应用程序的最佳性能。

当然,wrk 最大的优势,是其内置的 LuaJIT,可以用来实现复杂场景的性能测试。wrk 在调用 Lua 脚本时,可以将 HTTP 请求分为三个阶段,即 setup、running、done,如下

图所示:

​ 比如,你可以在 setup 阶段,为请求设置认证参数(来自于 wrk 官方 示例):

-- example script that demonstrates response handling and
-- retrieving an authentication token to set on all future
-- requests

token = nil
path  = "/authenticate"

request = function()
   return wrk.format("GET", path)
end

response = function(status, headers, body)
   if not token and status == 200 then
      token = headers["X-Token"]
      path  = "/resource"
      wrk.headers["X-Token"] = token
   end
end

而在执行测试时,通过 -s 选项,执行脚本的路径:

$ wrk -c 1000 -t 2 -s auth.lua http://192.168.0.30/

wrk 需要你用 Lua 脚本,来构造请求负载。这对于大部分场景来说,可能已经足够了 。不过,它的缺点也正是,所有东西都需要代码来构造,并且工具本身不提供 GUI 环境。

像 Jmeter 或者 LoadRunner(商业产品),则针对复杂场景提供了脚本录制、回放、GUI 等更丰富的功能,使用起来也更加方便。

小结

性能评估是优化网络性能的前提,只有在你发现网络性能瓶颈时,才需要进行网络性能优化。根据 TCP/IP 协议栈的原理,不同协议层关注的性能重点不完全一样,也就对应不

同的性能测试方法。比如,

  • 在应用层,你可以使用 wrk、Jmeter 等模拟用户的负载,测试应用程序的每秒请求数、处理延迟、错误数等;
  • 而在传输层,则可以使用 iperf 等工具,测试 TCP 的吞吐情况;
  • 再向下,你还可以用 Linux 内核自带的 pktgen ,测试服务器的 PPS。

由于低层协议是高层协议的基础。所以,一般情况下,我们需要从上到下,对每个协议层进行性能测试,然后根据性能测试的结果,结合 Linux 网络协议栈的原理,找出导致性能瓶颈的根源,进而优化网络性能。

阅读量:2029

点赞量:0

收藏量:0