6.深入理解递归-3-灵析社区

英勇黄铜

6.1树的问题绝大多数都可以使用「分治思想」解决

例:「力扣」第 105 题:从前序与中序遍历序列构造二叉树

根据一棵树的前序遍历与中序遍历构造二叉树。

注意:

你可以假设树中没有重复的元素。

例如,给出

前序遍历 preorder = [3,9,20,15,7]
中序遍历 inorder = [9,3,15,20,7]

返回如下的二叉树:

    3
   / \
  9  20
    /  \
   15   7

📖文字题解

前言

二叉树前序遍历的顺序为:

  • 先遍历根节点;
  • 随后递归地遍历左子树;
  • 最后递归地遍历右子树。

二叉树中序遍历的顺序为:

  • 先递归地遍历左子树;
  • 随后遍历根节点;
  • 最后递归地遍历右子树。

在「递归」地遍历某个子树的过程中,我们也是将这颗子树看成一颗全新的树,按照上述的顺序进行遍历。挖掘「前序遍历」和「中序遍历」的性质,我们就可以得出本题的做法。

方法一:递归

思路

对于任意一颗树而言,前序遍历的形式总是

[ 根节点, [左子树的前序遍历结果], [右子树的前序遍历结果] ]

即根节点总是前序遍历中的第一个节点。而中序遍历的形式总是

[ [左子树的中序遍历结果], 根节点, [右子树的中序遍历结果] ]

只要我们在中序遍历中定位到根节点,那么我们就可以分别知道左子树和右子树中的节点数目。由于同一颗子树的前序遍历和中序遍历的长度显然是相同的,因此我们就可以对应到前序遍历的结果中,对上述形式中的所有左右括号进行定位。

这样以来,我们就知道了左子树的前序遍历和中序遍历结果,以及右子树的前序遍历和中序遍历结果,我们就可以递归地对构造出左子树和右子树,再将这两颗子树接到根节点的左右位置。

细节

在中序遍历中对根节点进行定位时,一种简单的方法是直接扫描整个中序遍历的结果并找出根节点,但这样做的时间复杂度较高。我们可以考虑使用哈希表来帮助我们快速地定位根节点。对于哈希映射中的每个键值对,键表示一个元素(节点的值),值表示其在中序遍历中的出现位置。在构造二叉树的过程之前,我们可以对中序遍历的列表进行一遍扫描,就可以构造出这个哈希映射。在此后构造二叉树的过程中,我们就只需要 O(1) 的时间对根节点进行定位了。

下面的代码给出了详细的注释。

C++

class Solution {
private:
    unordered_map<int, int> index;

public:
    TreeNode* myBuildTree(const vector<int>& preorder, const vector<int>& inorder, int preorder_left, int preorder_right, int inorder_left, int inorder_right) {
        if (preorder_left > preorder_right) {
            return nullptr;
        }
        
        // 前序遍历中的第一个节点就是根节点
        int preorder_root = preorder_left;
        // 在中序遍历中定位根节点
        int inorder_root = index[preorder[preorder_root]];
        
        // 先把根节点建立出来
        TreeNode* root = new TreeNode(preorder[preorder_root]);
        // 得到左子树中的节点数目
        int size_left_subtree = inorder_root - inorder_left;
        // 递归地构造左子树,并连接到根节点
        // 先序遍历中「从 左边界+1 开始的 size_left_subtree」个元素就对应了中序遍历中「从 左边界 开始到 根节点定位-1」的元素
        root->left = myBuildTree(preorder, inorder, preorder_left + 1, preorder_left + size_left_subtree, inorder_left, inorder_root - 1);
        // 递归地构造右子树,并连接到根节点
        // 先序遍历中「从 左边界+1+左子树节点数目 开始到 右边界」的元素就对应了中序遍历中「从 根节点定位+1 到 右边界」的元素
        root->right = myBuildTree(preorder, inorder, preorder_left + size_left_subtree + 1, preorder_right, inorder_root + 1, inorder_right);
        return root;
    }

    TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) {
        int n = preorder.size();
        // 构造哈希映射,帮助我们快速定位根节点
        for (int i = 0; i < n; ++i) {
            index[inorder[i]] = i;
        }
        return myBuildTree(preorder, inorder, 0, n - 1, 0, n - 1);
    }
};

复杂度分析

时间复杂度:O(n),其中 n 是树中的节点个数。

空间复杂度:O(n),除去返回的答案需要的 O(n) 空间之外,我们还需要使用 O(n) 的空间存储哈希映射,以及 O(h)(其中 h 是树的高度)的空间表示递归时栈空间。这里h<n,所以总空间复杂度为 O(n)。

方法二:迭代

思路

迭代法是一种非常巧妙的实现方法。

对于前序遍历中的任意两个连续节点 u 和 v,根据前序遍历的流程,我们可以知道 u 和 v 只有两种可能的关系:

v 是 u 的左儿子。这是因为在遍历到 u 之后,下一个遍历的节点就是 u 的左儿子,即 v;

u 没有左儿子,并且 v 是 u 的某个祖先节点(或者 u 本身)的右儿子。如果 u 没有左儿子,那么下一个遍历的节点就是 u 的右儿子。如果 u 没有右儿子,我们就会向上回溯,直到遇到第一个有右儿子(且 u 不在它的右儿子的子树中)的节点 ua,那么 v 就是 ua的右儿子。

第二种关系看上去有些复杂。我们举一个例子来说明其正确性,并在例子中给出我们的迭代算法。

例子

我们以树

        3
       / \
      9  20
     /  /  \
    8  15   7
   / \
  5  10
 /
4

为例,它的前序遍历和中序遍历分别为

preorder = [3, 9, 8, 5, 4, 10, 20, 15, 7]

inorder = [4, 5, 8, 10, 9, 3, 15, 20, 7]

我们用一个栈 stack 来维护「当前节点的所有还没有考虑过右儿子的祖先节点」,栈顶就是当前节点。也就是说,只有在栈中的节点才可能连接一个新的右儿子。同时,我们用一个指针 index 指向中序遍历的某个位置,初始值为 0index 对应的节点是「当前节点不断往左走达到的最终节点」,这也是符合中序遍历的,它的作用在下面的过程中会有所体现。

首先我们将根节点 3入栈,再初始化index 所指向的节点为 4,随后对于前序遍历中的每个节点,我们依次判断它是栈顶节点的左儿子,还是栈中某个节点的右儿子。

  • 我们遍历 99 一定是栈顶节点 3 的左儿子。我们使用反证法,假设 93 的右儿子,那么 3 没有左儿子,index 应该恰好指向 3,但实际上为 4,因此产生了矛盾。所以我们将 9 作为 3 的左儿子,并将 9 入栈。

stack = [3, 9]

index -> inorder[0] = 4

  • 我们遍历 854。同理可得它们都是上一个节点(栈顶节点)的左儿子,所以它们会依次入栈。

stack = [3, 9, 8, 5, 4]

index -> inorder[0] = 4

  • 我们遍历 10,这时情况就不一样了。我们发现 index 恰好指向当前的栈顶节点 4,也就是说 4 没有左儿子,那么 10 必须为栈中某个节点的右儿子。那么如何找到这个节点呢?栈中的节点的顺序和它们在前序遍历中出现的顺序是一致的,而且每一个节点的右儿子都还没有被遍历过,那么这些节点的顺序和它们在中序遍历中出现的顺序一定是相反的。

这是因为栈中的任意两个相邻的节点,前者都是后者的某个祖先。并且我们知道,栈中的任意一个节点的右儿子还没有被遍历过,说明后者一定是前者左儿子的子树中的节点,那么后者就先于前者出现在中序遍历中。

因此我们可以把 index 不断向右移动,并与栈顶节点进行比较。如果 index 对应的元素恰好等于栈顶节点,那么说明我们在中序遍历中找到了栈顶节点,所以将 index 增加 1 并弹出栈顶节点,直到 index 对应的元素不等于栈顶节点。按照这样的过程,我们弹出的最后一个节点 x 就是 10 的双亲节点,这是因为10 出现在了 xx 在栈中的下一个节点的中序遍历之间,因此 10 就是 x 的右儿子。

回到我们的例子,我们会依次从栈顶弹出 458,并且将 index 向右移动了三次。我们将 10 作为最后弹出的节点 8 的右儿子,并将 10 入栈。

stack = [3, 9, 10]

index -> inorder[3] = 10

我们遍历 20。同理,index 恰好指向当前栈顶节点 10,那么我们会依次从栈顶弹出 1093,并且将 index 向右移动了三次。我们将 20 作为最后弹出的节点 3 的右儿子,并将 20 入栈。

stack = [20]

index -> inorder[6] = 15

我们遍历15,将 15 作为栈顶节点 20 的左儿子,并将 15 入栈。

stack = [20, 15]

index -> inorder[6] = 15

我们遍历 7。index 恰好指向当前栈顶节点 15,那么我们会依次从栈顶弹出 15 20,并且将 index 向右移动了两次。我们将 7 作为最后弹出的节点 20 的右儿子,并将 7 入栈。

stack = [7]

index -> inorder[8] = 7

此时遍历结束,我们就构造出了正确的二叉树。

算法

我们归纳出上述例子中的算法流程:

  • 我们用一个栈和一个指针辅助进行二叉树的构造。初始时栈中存放了根节点(前序遍历的第一个节点),指针指向中序遍历的第一个节点;
  • 我们依次枚举前序遍历中除了第一个节点以外的每个节点。如果 index 恰好指向栈顶节点,那么我们不断地弹出栈顶节点并向右移动 index,并将当前节点作为最后一个弹出的节点的右儿子;如果 index 和栈顶节点不同,我们将当前节点作为栈顶节点的左儿子;
  • 无论是哪一种情况,我们最后都将当前的节点入栈。

最后得到的二叉树即为答案。

C++

class Solution {
public:
    TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) {
        if (!preorder.size()) {
            return nullptr;
        }
        TreeNode* root = new TreeNode(preorder[0]);
        stack<TreeNode*> stk;
        stk.push(root);
        int inorderIndex = 0;
        for (int i = 1; i < preorder.size(); ++i) {
            int preorderVal = preorder[i];
            TreeNode* node = stk.top();
            if (node->val != inorder[inorderIndex]) {
                node->left = new TreeNode(preorderVal);
                stk.push(node->left);
            }
            else {
                while (!stk.empty() && stk.top()->val == inorder[inorderIndex]) {
                    node = stk.top();
                    stk.pop();
                    ++inorderIndex;
                }
                node->right = new TreeNode(preorderVal);
                stk.push(node->right);
            }
        }
        return root;
    }
};

复杂度分析

时间复杂度:O(n),其中 n 是树中的节点个数。

空间复杂度:O(n),除去返回的答案需要的 O(n) 空间之外,我们还需要使用 O(h)(其中 h 是树的高度)的空间存储栈。这里 h<n,所以(在最坏情况下)总空间复杂度为O(n)。

6.2总结与练习

「递归」方法虽然会有栈的开销,但是我们在面对一个复杂问题的时候,通过「拆分子问题」,解决「子问题」的方式往往会使得问题变得简单。因此编写「递归」方法或者说「分治思想」是我们解决问题的重要手段。

阅读量:633

点赞量:0

收藏量:0