我们新增加了一些中文词汇到词表中,但是这些词汇是没有得到训练的,因此在进行指令微调之前我们要进行预训练。预训练的方式一般都是相同的,简单来说,就是根据上一个字预测下一个字是什么。我们这里直接使用 IDEA-CCNL/Wenzhong2.0-GPT2-110M-BertTokenizer-chinese 模型,并且 tokenizer 也是其自带的。
首先使用 tokenizer() 函数得到相关的输入,需要注意的是可能会在文本前后添加特殊的标记,比如 bos_token_id 和 eos_token_id,针对于不同模型的 tokneizer 可能会不太一样。这里在 input_ids 前后添加了 21134 和 21133 两个标记。
然后将所有文本的 input_ids、attention_mask、token_type_ids 各自拼接起来(展开后拼接,不是二维数组之间的拼接),再设定一个最大长度 block_size,这样得到最终的输入。
import os
import logging
import datasets
import transformers
from pprint import pprint
from itertools import chain
from datasets import load_dataset, concatenate_datasets
from transformers.testing_utils import CaptureLogger
from transformers import AutoTokenizer, LlamaTokenizer
tok_logger = transformers.utils.logging.get_logger("transformers.tokenization_utils_base")
logger = logging.getLogger(__name__)
lm_datasets = []
files = ["data/test_corpus.txt"]
data_cache_dir = "./cache_data"
preprocessing_num_workers = 1
# tokenizer = AutoTokenizer.from_pretrained("hfl/chinese-bert-wwm-ext")
tokenizer = LlamaTokenizer.from_pretrained("ziqingyang/chinese-llama-lora-7b")
tokenizer = AutoTokenizer.from_pretrained("IDEA-CCNL/Wenzhong2.0-GPT2-110M-BertTokenizer-chinese")
def print_dict(adict):
for k,v in adict.items():
print(k, v)
def tokenize_function(examples):
with CaptureLogger(tok_logger) as cl:
output = tokenizer(examples["text"])
# clm input could be much much longer than block_size
if "Token indices sequence length is longer than the" in cl.out:
tok_logger.warning(
"^^^^^^^^^^^^^^^^ Please ignore the warning above - this long input will be chunked into smaller bits"
" before being passed to the model."
)
return output
block_size = 128
# 将所有文本进行拼接
def group_texts(examples):
# Concatenate all texts.
concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()}
total_length = len(concatenated_examples[list(examples.keys())[0]])
# We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
# customize this part to your needs.
if total_length >= block_size:
total_length = (total_length // block_size) * block_size
# Split by chunks of max_len.
result = {
k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
for k, t in concatenated_examples.items()
}
result["labels"] = result["input_ids"].copy()
return result
for idx, file in enumerate(files):
data_file = file
filename = ''.join(file.split(".")[:-1])
cache_path = os.path.join(data_cache_dir, filename)
os.makedirs(cache_path, exist_ok=True)
try:
processed_dataset = datasets.load_from_disk(cache_path, keep_in_memory=False)
print(f'training datasets-{filename} has been loaded from disk')
except Exception:
cache_dir = os.path.join(data_cache_dir, filename + "_text")
os.makedirs(cache_dir, exist_ok=True)
raw_dataset = load_dataset("text", data_files=data_file, cache_dir=cache_dir, keep_in_memory=False)
print_dict(raw_dataset["train"][0])
# 直接进行tokenize,需要注意的是只需要在句子开头加上bos_token
tokenized_dataset = raw_dataset.map(
tokenize_function,
batched=True,
num_proc=preprocessing_num_workers,
remove_columns="text",
load_from_cache_file=True,
keep_in_memory=False,
cache_file_names={k: os.path.join(cache_dir, f'tokenized.arrow') for k in raw_dataset},
desc="Running tokenizer on dataset",
)
print_dict(tokenized_dataset["train"][0])
grouped_datasets = tokenized_dataset.map(
group_texts,
batched=True,
num_proc=preprocessing_num_workers,
load_from_cache_file=True,
keep_in_memory=False,
cache_file_names={k: os.path.join(cache_dir, f'grouped.arrow') for k in tokenized_dataset},
desc=f"Grouping texts in chunks of {block_size}",
)
processed_dataset = grouped_datasets
print_dict(processed_dataset["train"][0])
processed_dataset.save_to_disk(cache_path)
if idx == 0:
lm_datasets = processed_dataset['train']
else:
assert lm_datasets.features.type == processed_dataset["train"].features.type
lm_datasets = concatenate_datasets([lm_datasets, processed_dataset["train"]])
lm_datasets = lm_datasets.train_test_split(test_size=0.1)
print_dict(lm_datasets["train"][0])
from transformers import BertTokenizer,GPT2LMHeadModel, AutoModelForCausalLM
hf_model_path = 'IDEA-CCNL/Wenzhong2.0-GPT2-110M-BertTokenizer-chinese'
tokenizer = BertTokenizer.from_pretrained(hf_model_path)
model = AutoModelForCausalLM.from_pretrained(hf_model_path)
def generate_word_level(input_text,n_return=5, max_length=128,top_p=0.9):
inputs = tokenizer(input_text,return_tensors='pt', add_special_tokens=False).to(model.device)
gen = model.generate(
inputs=inputs['input_ids'],
max_length=max_length,
do_sample=True,
top_p=top_p,
eos_token_id=21133,
pad_token_id=0,
num_return_sequences=n_return)
sentences = tokenizer.batch_decode(gen)
for idx,sentence in enumerate(sentences):
print(f'sentence {idx}: {sentence}')
print('*'*20)
return gen
# 西湖的景色
outputs = generate_word_level('你好,世界!',n_return=5,max_length=128)
print(outputs)
接下来是使用该模型针对我们自己的数据进行继续预训练了。需要注意的几个地方:
model_vocab_size = model.get_output_embeddings().weight.size(0)
model.resize_token_embeddings(len(tokenizer))
训练指令:
torchrun --nnodes 1 --nproc_per_node 1 run_clm_pt_with_peft.py \
--deepspeed ds_zero2_no_offload.json \
--model_name_or_path IDEA-CCNL/Wenzhong2.0-GPT2-110M-BertTokenizer-chinese \
--tokenizer_name_or_path IDEA-CCNL/Wenzhong2.0-GPT2-110M-BertTokenizer-chinese \
--dataset_dir data \
--data_cache_dir temp_data_cache_dir \
--validation_split_percentage 0.001 \
--per_device_train_batch_size 32 \
--per_device_eval_batch_size 16 \
--do_train --seed $RANDOM \
--fp16 \
--max_steps 2500 \
--lr_scheduler_type cosine \
--learning_rate 2e-4 \
--warmup_ratio 0.05 \
--weight_decay 0.01 \
--logging_strategy steps \
--logging_steps 10 \
--save_strategy steps \
--save_total_limit 3 \
--save_steps 50 \
--gradient_accumulation_steps 1 \
--preprocessing_num_workers 8 \
--block_size 512 \
--output_dir output_dir \
--overwrite_output_dir \
--ddp_timeout 30000 \
--logging_first_step True \
--lora_rank 8 \
--lora_alpha 32 \
--trainable c_attn \
--modules_to_save transformer.wte,lm_head \
--lora_dropout 0.05 \
--torch_dtype float16 \
--gradient_checkpointing \
--ddp_find_unused_parameters False
import os
import torch
from transformers import BertTokenizer,GPT2LMHeadModel, AutoModelForCausalLM
from peft import PeftModel
hf_model_path = 'IDEA-CCNL/Wenzhong2.0-GPT2-110M-BertTokenizer-chinese'
tokenizer = BertTokenizer.from_pretrained(hf_model_path)
model = AutoModelForCausalLM.from_pretrained(hf_model_path)
model_vocab_size = model.get_output_embeddings().weight.size(0)
model.resize_token_embeddings(len(tokenizer))
model = PeftModel.from_pretrained(model, os.path.join("output_dir", "adapter_model"), torch_dtype=torch.float32)
model.cuda()
model.eval()
def generate_word_level(input_text,n_return=5,max_length=128,top_p=0.9):
inputs = tokenizer(input_text,return_tensors='pt',add_special_tokens=False).to(model.device)
gen = model.generate(
inputs=inputs['input_ids'],
max_length=max_length,
do_sample=True,
top_p=top_p,
eos_token_id=21133,
pad_token_id=0,
num_return_sequences=n_return)
sentences = tokenizer.batch_decode(gen)
for idx,sentence in enumerate(sentences):
print(f'sentence {idx}: {sentence}')
print('*'*20)
return gen
outputs = generate_word_level('宫廷玉液酒',n_return=5,max_length=128)
print(outputs)
阅读量:462
点赞量:0
收藏量:0