LLM Agent 是一种人工智能系统,它利用大型语言模型 (LLM) 作为其核心计算引擎,展示文本生成之外的功能,包括进行对话、完成任务、推理,并可以展示一定程度的自主行为。LLM Agent 根据设计阶段授予的功能,Agent 从纯粹的被动到高度主动的自主行为。同时利用大模型的推理能力,让 Agent 可以在人工监督下管理相对独立的工作流程:分析目标,项目规划,执行,回顾过去的工作,迭代细化。
Agent = LLM + Prompt Recipe + Tools + Interface + Knowledge + Memory
一般来说 LLM Agents 分为会话型 Agents 和任务型 Agents,两者在目标、行为和prompt方法都有重要区别。
会话型专注于提供引人入胜的个性化讨论,任务型致力于完成明确定义的目标。
Conversational Agents:模拟人类对话,能够在讨论中反映人类的倾向。允许细致入微的上下文交互,会考虑语气、说话风格、领域知识、观点和个性怪癖等因素。agent的开发者可以持续增强记忆、知识整合提高响应能力,持续优化应用。
Task-Oriented Agents:实现目标驱动,利用模型的能力分析prompt、提取关键参数、指定计划、调用API、通过集成tools执行操作,并生成结果回复。Prompt 工程把目标型Agents拆分成如下环节:制定战略任务、串联思路、反思过去的工作以及迭代改进的方法。
通常有自制能力的系统,至少有两类agent组成。一个用于生成的agent,一个用于监督的agent。生成agent根据提示生成回复。监督agent在必要时审查和重新提示或指示生成agent继续工作,同时提供交互反馈。自主技能是通过持续提示培养出来的。专门的监督agent提供方向、纠正和不断提高挑战,持续的提示释放了推理、效能和自主决策能力的增长。
阅读量:175
点赞量:0
收藏量:0