Opencv2.x-python 与opencv3.x-python特征点检测方法-灵析社区

番茄炒蛋不要蛋

Open2.x-Python 特征点检测方法

对于OpenCV2.x-Python,特征点检测及显示方法如下:

  1. # OpenCV2.x-Python
  2. function = cv2.Function_Name()
  3. keypoints = function.detect(img, None)
  4. img2 = cv2.drawKeyPoints(img, keypoints, color=(0,255,0))

其中Function_Name就是特征检测方法的函数名,如BRISK、FastFeatureDetector等。

比如,在OpenCV2.x-Python,想使用Fast来检测特征点,示例如下:

  1. # OpenCV2.x-Python
  2. fast = cv2.FastFeatureDetector()
  3. keypoints = fast.detect(img, None)
  4. img2 = cv2.drawKeypoints(img, keypoints, color=(255,0,0))

Open3.x-Python 特征点检测方法

对于OpenCV3.x-Python,特征点检测及显示方法如下:

  1. # OpenCV3.x-Python
  2. # 注意有_create()后缀
  3. function = cv2.Function_Name_create()
  4. keypoints = function.detect(img, None)
  5. # 注意显示之前要先将img2初始化
  6. img2 = img.copy()
  7. img2 = cv2.drawKeyPoints(img, keypoints, color=(0,255,0))

其中Function_Name就是特征检测方法的函数名,如BRISK、FastFeatureDetector等。

[注意1]:对于OpenCV3.x-Python,还要在Function_Name后加上_create后缀。其实这一点在opencv_doc中具体的函数python使用方法中已经注明了。

[注意2]:对于OpenCV3.x-Python,若要显示检测的特征点,需要初始化img2,才能正常显示。这里可以先使用img2 = img.copy()完成拷贝初始化。

下面就重点介绍OpenCV3.x-Python中的各种特征点检测方法的使用示例。

测试图像为标准的lena.png

AKAZE Feature Detection

#!/usr/bin/env python
# -*- coding=utf-8 -*-
# Summary: 使用OpenCV3.x-Python检测AKAZE特征点
# Author:  Amusi
# Date:    2018-03-17
# Reference: https://docs.opencv.org/master/d8/d30/classcv_1_1AKAZE.html
import cv2
import numpy
def main():
       img = cv2.imread("lena.png")
       cv2.imshow('Input Image', img)
       cv2.waitKey(0)
      
       # 检测
       akaze = cv2.AKAZE_create()
       keypoints = akaze.detect(img, None)
      
       # 显示
       # 必须要先初始化img2
       img2 = img.copy()
       img2 = cv2.drawKeypoints(img, keypoints, img2, color=(0,255,0))
       cv2.imshow('Detected AKAZE keypoints', img2)
       cv2.waitKey(0)
    
if __name__ == '__main__':
       main()

BRISK Feature Detection


#!/usr/bin/env python
# -*- coding=utf-8 -*-
# Summary: 使用OpenCV3.x-Python检测BRISK特征点
# Author:  Amusi
# Date:    2018-03-17
# Reference: https://docs.opencv.org/master/de/dbf/classcv_1_1BRISK.html
import cv2
import numpy
def main():
       img = cv2.imread("lena.png")
       cv2.imshow('Input Image', img)
       cv2.waitKey(0)
       brisk = cv2.BRISK_create()
       keypoints = brisk.detect(img, None)
      
       # 必须要先初始化img2
       img2 = img.copy()
       img2 = cv2.drawKeypoints(img, keypoints, img2, color=(0,255,0))
       cv2.imshow('Detected BRISK keypoints', img2)
       cv2.waitKey(0)
    
if __name__ == '__main__':
       main()

Fast Feature Detection

#!/usr/bin/env python
# -*- coding=utf-8 -*-
# Summary: 使用OpenCV3.x-Python检测FAST特征点
# Author:  Amusi
# Date:    2018-03-17
# Reference: https://docs.opencv.org/master/df/d74/classcv_1_1FastFeatureDetector.html
import cv2
import numpy
def main():
       img = cv2.imread("lena.png")
       cv2.imshow('Input Image', img)
       cv2.waitKey(0)
       # 2018-03-17 Amusi: OpenCV3.x FeatureDetector写法有变化
       # OpenCV2.x
       # fast = cv2.FastFeatureDetector()
       # keypoints = fast.detect(img, None)
      
       # OpenCV3.x
       # 注意有_create()后缀
       fast = cv2.FastFeatureDetector_create()
       keypoints = fast.detect(img, None)
      
       # 必须要先初始化img2
       img2 = img.copy()
       img2 = cv2.drawKeypoints(img, keypoints, img2, color=(0,255,0))
       cv2.imshow('Detected FAST keypoints', img2)
       cv2.waitKey(0)
    
if __name__ == '__main__':
       main()

KAZE Feature Detection

#!/usr/bin/env python
# -*- coding=utf-8 -*-
# Summary: 使用OpenCV3.x-Python检测KAZE特征点
# Author:  Amusi
# Date:    2018-03-17
# Reference: https://docs.opencv.org/master/d3/d61/classcv_1_1KAZE.html
import cv2
import numpy
def main():
       img = cv2.imread("lena.png")
       cv2.imshow('Input Image', img)
       cv2.waitKey(0)
      
       # 检测
       kaze = cv2.KAZE_create()
       keypoints = kaze.detect(img, None)
      
       # 显示
       # 必须要先初始化img2
       img2 = img.copy()
       img2 = cv2.drawKeypoints(img, keypoints, img2, color=(0,255,0))
       cv2.imshow('Detected KAZE keypoints', img2)
       cv2.waitKey(0)
    
if __name__ == '__main__':
       main()

ORB Feature Detection

#!/usr/bin/env python
# -*- coding=utf-8 -*-
# Summary: 使用OpenCV3.x-Python检测ORB特征点
# Author:  Amusi
# Date:    2018-03-17
# Reference: https://docs.opencv.org/master/db/d95/classcv_1_1ORB.html
import cv2
import numpy
def main():
       img = cv2.imread("lena.png")
       cv2.imshow('Input Image', img)
       cv2.waitKey(0)
      
       # 检测
       orb = cv2.ORB_create()
       keypoints = orb.detect(img, None)
      
       # 显示
       # 必须要先初始化img2
       img2 = img.copy()
       img2 = cv2.drawKeypoints(img, keypoints, img2, color=(0,255,0))
       cv2.imshow('Detected ORB keypoints', img2)
       cv2.waitKey(0)
    
if __name__ == '__main__':
       main()

----------我是可爱的分割线----------

下面介绍属于nonfree的特征检测方法,如SIFT和SURF。

这些方法在opencv-contrib中,所以想要使用前,请卸载当前非contrib版本的opencv,即pip uninstall opencv-python后;再重新安装opencv-contrib-python,即pip install opencv-contrib-python

SIFT Feature Detection

#!/usr/bin/env python
# -*- coding=utf-8 -*-
# Summary: 使用OpenCV3.x-Python检测SIFT特征点
# Author:  Amusi
# Date:    2018-03-17
# Reference: https://docs.opencv.org/master/d5/d3c/classcv_1_1xfeatures2d_1_1SIFT.html
import cv2
import numpy
def main():
       img = cv2.imread("lena.png")
       cv2.imshow('Input Image', img)
       cv2.waitKey(0)
      
       # 检测
       sift = cv2.xfeatures2d.SIFT_create()
       keypoints = sift.detect(img, None)
      
       # 显示
       # 必须要先初始化img2
       img2 = img.copy()
       img2 = cv2.drawKeypoints(img, keypoints, img2, color=(0,255,0))
       cv2.imshow('Detected SIFT keypoints', img2)
       cv2.waitKey(0)
    
if __name__ == '__main__':
       main()

SURF Feature Detection

#!/usr/bin/env python
# -*- coding=utf-8 -*-
# Summary: 使用OpenCV3.x-Python检测SURF特征点
# Author:  Amusi
# Date:    2018-03-17
# Reference: https://docs.opencv.org/master/d5/df7/classcv_1_1xfeatures2d_1_1SURF.html
import cv2
import numpy
def main():
       img = cv2.imread("lena.png")
       cv2.imshow('Input Image', img)
       cv2.waitKey(0)
      
       # 检测
       surf = cv2.xfeatures2d.SURF_create()
       keypoints = surf.detect(img, None)
      
       # 显示
       # 必须要先初始化img2
       img2 = img.copy()
       img2 = cv2.drawKeypoints(img, keypoints, img2, color=(0,255,0))
       cv2.imshow('Detected SURF keypoints', img2)
       cv2.waitKey(0)
    
if __name__ == '__main__':
       main()

注:OpenCV3.x-Python与OpenCV2.x-Python有很多函数的用法不同,虽然网上教程大多参次不齐,但可以直接去官网查看最新的用法(官网即正义)

阅读量:2028

点赞量:0

收藏量:0