基于YOLOv8的交通摄像头下车辆检测算法(六):SPD-Conv,低分辨率图像和小物体等更困难任务-灵析社区

神机妙算

本文改进: 新的注意力机制——多尺度空洞注意力(MSDA)。MSDA 能够模拟小范围内的局部和稀疏的图像块交互;

如何在YOLOv8下使用:1)作为注意力机制放在各个网络位置;2)与C2f结合替代原始的C2f

MSCA多尺度特性在交通摄像头下车辆检测项目中, mAP50从原始的0.745提升至0.756

学姐带你学习YOLOv8,从入门到创新,轻轻松松搞定科研;

1.交通摄像头车辆检测数据集介绍

数据集来源:极市开发者平台-计算机视觉算法开发落地平台-极市科技

数据集类别“car",训练集验证集测试集分别5248,582,291张

下图可以看出都是车辆数据集具有不同尺寸的目标物体,既有大目标又有小目标

1.1 小目标检测难点

本文所指的小目标是指COCO中定义的像素面积小于32*32 pixels的物体。小目标检测的核心难点有三个:

由本身定义导致的rgb信息过少,因而包含的判别性特征特征过少。

数据集方面的不平衡。这主要针对COCO而言,COCO中只有51.82%的图片包含小物体,存在严重的图像级不平衡。具体的统计结果见下图。

系。

  2.论文简介

论文:https://arxiv.org/pdf/2208.03641v1.pdf

github:SPD-Conv/YOLOv5-SPD at main · LabSAINT/SPD-Conv · GitHub

摘要:卷积神经网络(CNNs)在计算即使觉任务中如图像分类和目标检测等取得了显著的成功。然而,当图像分辨率较低或物体较小时,它们的性能会灾难性下降。这是由于现有CNN常见的设计体系结构中有缺陷,即使用卷积步长和/或池化层,这导致了细粒度信息的丢失和较低效的特征表示的学习。为此,我们提出了一个名为SPD-Conv的新的CNN构建块来代替每个卷积步长和每个池化层(因此完全消除了它们)。SPD-Conv由一个空间到深度(SPD)层和一个无卷积步长(Conv)层组成,可以应用于大多数CNN体系结构。我们从两个最具代表性的计算即使觉任务:目标检测和图像分类来解释这个新设计。然后,我们将SPD-Conv应用于YOLOv5和ResNet,创建了新的CNN架构,并通过经验证明,我们的方法明显优于最先进的深度学习模型,特别是在处理低分辨率图像和小物体等更困难的任务时。

1.1  SPD- conv

SPD- conv由一个空间到深度(SPD)层和一个非跨步卷积层组成。SPD组件推广了一种(原始)图像转换技术[29]来对CNN内部和整个CNN的特征映射进行下采样:



1.2 Yolov5-SPD网络结构图

只需更换YOLOv5 stride-2卷积层即可得到YOLOv5- SPD,用SPD-Conv构建块取代原有卷积。有7个这样的替换实例,因为YOLOv5在主干中使用5个stride-2卷积层对特征图进行25倍的下采样,在neck使用2个stride-2卷积层。在YOLOv5 neck中,每一次步长卷积后都有一个连接层;这并没有改变我们的方法,我们只是将其保持在SPD和Conv之间。


YOLOv5-SPD提供多个版本:

YOLOv5-SPD性能:

  我们比较YOLOv5-SPD-m和YOLOv5m,因为后者是相应(中等)类别中所有基准模型中性能最好的。图5(a)(b)表明YOLOv5-SPD-m能够检测到被遮挡的长颈鹿,YOLOv5m没有检测到,图5(c)(d)显示YOLOv5-SPD-m检测到非常小的目标(一张脸和两个长凳),而YOLOv5m检测不到。

源码详见:

YOLOv8改进:小目标涨点系列篇 | SPD-Conv,低分辨率图像和小物体等更困难任务涨点明显-CSDN博客

3.训练可视化分析

mAP50从原始的0.745提升至0.802

YOLOv8_SPD summary (fused): 174 layers, 3451283 parameters, 0 gradients, 50.9 GFLOPs
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 37/37 [00:22<00:00,  1.68it/s]
                   all        582       6970      0.828      0.742      0.802      0.416

训练结果如下:

PR_curve.png

PR曲线中的P代表的是precision(精准率),R代表的是recall(召回率),其代表的是精准率与召回率的关系。

文章知识点与官方知识档案匹配,可进一步学习相关知识


阅读量:1549

点赞量:0

收藏量:0