之前我们介绍了机器学习的一些基础性工作,介绍了如何对数据进行预处理,接下来我们可以根据这些数据以及我们的研究目标建立模型。那么如何选择合适的模型呢?首先需要对这些模型的效果进行评估。本文介绍如何使用sklearn代码进行模型评估
模型评估 对模型评估的基本步骤如下:
在机器学习问题中,从理论上我们需要对数据集划分为训练集、验证集、测试集。
sklearn中的train_test_split划分数据集# 导入相关库
from sklearn.model_selection import train_test_split
from sklearn import datasets
from sklearn import metrics
from sklearn.model_selection import KFold, cross_val_score
from sklearn.pipeline import make_pipeline
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import StandardScaler
import pandas as pd# 导入数据
df = pd.read_csv(r'C:\Users\DELL\data-science-learning\seaborn-data\iris.csv')
df.shape(150, 5)# 划分数据集和测试集
train_set, test_set = train_test_split(df, test_size=0.3,
random_state=12345)train_set.shape, test_set.shape((105, 5), (45, 5))可以看出此时训练集只有105个数据,测试集有45个数据。
评估模型时,我们最常用的方法之一就是==交叉验证==,下面以一个具体案例来看如何实现,代码如下
# 加载数据
digits = datasets.load_digits()# 创建特征矩阵
features = digits.data
target = digits.target# 进行标准化
stand = StandardScaler()# 创建logistic回归器
logistic = LogisticRegression()# 创建一个包含数据标准化和逻辑回归的流水线
pipline = make_pipeline(stand, logistic)# 先对数据进行标准化,再用logistic回归拟合# 创建k折交叉验证对象
kf = KFold(n_splits=10, shuffle=True, random_state=1)使用shuffle打乱数据,保证我们验证集和训练集是独立同分布的(IID)的
# 进行k折交叉验证
cv_results = cross_val_score(pipline,
features,
target,
cv=kf,
scoring='accuracy',#评估的指标
n_jobs=-1)#调用所有的cpucv_results.mean()0.9693916821849783使用pipeline方法可以使得我们这个过程很方便,上述我们是直接对数据集进行了交叉验证,在实际应用中,建议先对数据集进行划分,再对训练集使用交叉验证。
from sklearn.model_selection import train_test_split# 划分数据集
features_train, features_test, target_train, target_test = train_test_split(features,
target,
test_size=0.1,random_state=1)# 使用训练集来计算标准化参数
stand.fit(features_train)StandardScaler()# 然后在训练集和测试集上运用
features_train_std = stand.transform(features_train)
features_test_std = stand.transform(features_test)这里之所以这样处理是因为我们的测试集是未知数据,如果使用测试集和训练集一起训练预处理器的话,测试集的信息有一部分就会泄露,因此是不科学的。在这里我认为更general的做法是先将训练集训练模型,用验证集评估选择模型,最后再用训练集和验证集一起来训练选择好的模型,再来在测试集上进行测试。
pipeline = make_pipeline(stand, logistic)cv_results = cross_val_score(pipline,
features_train_std,
target_train,
cv=kf,
scoring='accuracy',
n_jobs=-1)cv_results.mean()0.9635112338010889评估回归模型的主要指标有以下几个


# 导入相关库
from sklearn.datasets import make_regression
from sklearn.model_selection import cross_val_score
from sklearn.linear_model import LinearRegression
from sklearn import metrics# 建立模拟数据集
features, target = make_regression(n_samples=100,
n_features=3,
n_informative=3,
n_targets=1,
noise=50,
coef=False,
random_state=1)# 创建LinerRegression回归器
ols = LinearRegression()metrics.SCORERS.keys()dict_keys(['explained_variance', 'r2', 'max_error', 'neg_median_absolute_error', 'neg_mean_absolute_error', 'neg_mean_absolute_percentage_error', 'neg_mean_squared_error', 'neg_mean_squared_log_error', 'neg_root_mean_squared_error', 'neg_mean_poisson_deviance', 'neg_mean_gamma_deviance', 'accuracy', 'top_k_accuracy', 'roc_auc', 'roc_auc_ovr', 'roc_auc_ovo', 'roc_auc_ovr_weighted', 'roc_auc_ovo_weighted', 'balanced_accuracy', 'average_precision', 'neg_log_loss', 'neg_brier_score', 'adjusted_rand_score', 'rand_score', 'homogeneity_score', 'completeness_score', 'v_measure_score', 'mutual_info_score', 'adjusted_mutual_info_score', 'normalized_mutual_info_score', 'fowlkes_mallows_score', 'precision', 'precision_macro', 'precision_micro', 'precision_samples', 'precision_weighted', 'recall', 'recall_macro', 'recall_micro', 'recall_samples', 'recall_weighted', 'f1', 'f1_macro', 'f1_micro', 'f1_samples', 'f1_weighted', 'jaccard', 'jaccard_macro', 'jaccard_micro', 'jaccard_samples', 'jaccard_weighted'])# 使用MSE对线性回归做交叉验证
cross_val_score(ols, features, target, scoring='neg_mean_squared_error', cv=5)array([-1974.65337976, -2004.54137625, -3935.19355723, -1060.04361386,
-1598.74104702])cross_val_score(ols, features, target, scoring='r2')array([0.8622399 , 0.85838075, 0.74723548, 0.91354743, 0.84469331])from sklearn.datasets import load_boston
from sklearn.dummy import DummyRegressor
from sklearn.model_selection import train_test_split# 加载数据
boston = load_boston()features, target = boston.data, boston.target# 将数据分为测试集和训练集
features_train, features_test, target_train, target_test = train_test_split(features, target,
random_state=0)# 创建dummyregression对象
dummy = DummyRegressor(strategy='mean')# 训练模型
dummy.fit(features_train, target_train)DummyRegressor()dummy.score(features_test, target_test)-0.001119359203955339# 下面我们训练自己的模型进行对比
from sklearn.linear_model import LinearRegression
ols = LinearRegression()
ols.fit(features_train, target_train)LinearRegression()ols.score(features_test, target_test)0.6354638433202129通过与基准模型的对比,我们可以发现我们线性回归模型的优势
评估分类器性能一个重要方法是查看混淆矩阵。一般的想法是计算A类实例被分类为B类的次数,以及B类被预测为A类的个数。要计算混淆矩阵,首先需要有一组预测,以便与实际目标进行比较。==混淆矩阵==如下图所示:

其中:
TP:正确预测正类的个数FP:错误预测正类的个数TN:正确预测负类的个数下面我们来看如何使用具体的代码得到混淆矩阵
# 导入相关库
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn import datasets
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix
import pandas as pd# 加载数据
iris = load_iris()features = iris.datatarget = iris.targetclass_names = iris.target_namesfeatures_train, features_test, target_train, target_test = train_test_split(
features, target, random_state = 1)classfier = LogisticRegression()target_predicted = classfier.fit(features_train, target_train).predict(features_test)# 创建一个混淆矩阵
matrix = confusion_matrix(target_test, target_predicted)df = pd.DataFrame(matrix, index = class_names, columns=class_names)sns.heatmap(df, annot=True, cbar=None, cmap='Blues')
plt.ylabel('True Class')
plt.xlabel('Predict Class')
plt.title('Confusion matrix')Text(0.5, 1.0, 'Confusion matrix')
对于分类问题的评估指标主要包含以下几个:

其中,对于非均衡数据,使用F1-score比较合理。下面我们来看具体如何得到这些评估指标
from sklearn.model_selection import cross_val_score
from sklearn.linear_model import LogisticRegression
from sklearn.datasets import make_classification# 创建模拟数据集
X, y = make_classification(random_state=1,
n_samples=1000,
n_features=3,
n_informative=3,
n_redundant=0,
n_classes=2)# 创建逻辑回归器
logit = LogisticRegression()# 使用准确率对模型进行交叉验证
cross_val_score(logit, X, y, scoring='accuracy')array([0.87, 0.88, 0.85, 0.93, 0.9 ])cross_val_score(logit, X, y, scoring='f1')array([0.87735849, 0.88235294, 0.85849057, 0.92708333, 0.90384615])cross_val_score(logit,X,y,scoring='precision')array([0.83035714, 0.86538462, 0.8125 , 0.9673913 , 0.86238532])其中,我们可以看出,==召回率==和==精确率==两个往往不会同时增加(增加样本量可能可以让两个指标同时增加),这里有点像我们假设检验中的第一类错误和第二类错误。因此,我们要保证这两个指标都不能太小。下面我们介绍ROC和AUC
RUC曲线是用于二分类器的另一个常用工具。它与精密度/召回率非常相似,但不是绘制精密度与召回率的关系,而是绘制真阳性率(召回率的另一个名称)与假阳性率(FPR)的关系。FPR是未正确归类为正的负实例的比率。通过ROC曲线来进行评估,计算出每个阈值下的真阳性率和假阳性率

# 导入相关库
import matplotlib.pyplot as plt
from sklearn.datasets import make_classification
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import roc_curve, roc_auc_score
from sklearn.model_selection import train_test_splitfeatures, target = make_classification(n_samples=1000,
n_features=10,
n_classes=2,
n_informative=3,
random_state=3)features_train, features_test, target_train, target_test = train_test_split(features,
target,
test_size=.1,
random_state=1)logit.fit(features_train, target_train)LogisticRegression()# 预测为1的概率
target_probabilities = logit.predict_proba(features_test)[:,1]target_testarray([0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1,
1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0,
0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0,
1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0,
1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1])这里我们选取所有第二列的概率的值,也就是所有为正类的值
false_positive_rate, true_positive_rate, thresholds = roc_curve(target_test,target_probabilities)我们默认是将概率大于50%的判断为正类,但当我们实际应用时,可以对阈值进行相应的调整,例如我们可以增加阈值,保证正类的准确度更高,如下所示
y_predict = target_probabilities>0.6
y_predictarray([False, False, True, False, True, True, False, True, False,
False, False, True, False, False, False, True, False, False,
False, False, True, True, True, False, True, True, True,
False, True, False, True, False, True, True, False, False,
True, True, True, True, True, False, False, True, False,
True, True, False, False, False, False, True, False, False,
True, True, True, False, True, False, True, False, False,
True, True, False, True, True, True, True, True, True,
False, True, False, False, True, False, False, False, False,
True, True, False, True, False, True, False, True, False,
False, True, False, False, True, False, True, False, False,
True])# 绘制AUC曲线
plt.plot(false_positive_rate, true_positive_rate)
plt.plot([0, 1], ls='--')
plt.plot([0, 0], [1, 0], c='.7')
plt.plot([1,1], c='.7')
# 我们可以通过predict_proba 查看样本的预测概率
logit.predict_proba(features_test)[2]array([0.02210395, 0.97789605])logit.classes_array([0, 1])比较分类器的一种方法是测量曲线下面积(AUC)。完美分类器的AUC等于1,而适当的随机分类器的AUC等于0.5。Sklearn提供了一个计算AUC的函数roc_auc_score
计算==AUC==值
roc_auc_score(target_test,target_probabilities)0.9747899159663865可以看出该分类器的AUC值为0.97,说明该模型的效果很好。
由于ROC曲线与精度/召回(PR)曲线非常相似,您可能想知道如何决定使用哪一条曲线。根据经验,当阳性类别很少,或者当你更关心假阳性而不是假阴性时,你应该更喜欢PR曲线。否则,使用ROC曲线。
from sklearn.datasets import load_iris
from sklearn.dummy import DummyClassifier
from sklearn.model_selection import train_test_splitiris = load_iris()features, target = iris.data, iris.target# 划分数据集
features_train, features_test, target_train, target_test = train_test_split(features, target,
random_state=0)dummy = DummyClassifier(strategy='uniform', random_state=1)dummy.fit(features_train, target_train)DummyClassifier(random_state=1, strategy='uniform')dummy.score(features_test, target_test)0.42105263157894735# 接下来我们创建自己的模型from sklearn.ensemble import RandomForestClassifier#随机森林分类,考虑在后面分享classfier = RandomForestClassifier()classfier.fit(features_train, target_train)RandomForestClassifier()classfier.score(features_test, target_test)0.9736842105263158可以看出,随机森林模型效果更好
我们都知道,只要给我们足够多的数据集,那我们基本能训练一个效果很好的模型,接下来我们来看看如何绘制训练集大小对模型效果的影响(learning curve)
import numpy as np
import matplotlib.pyplot as plt
from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import load_digits
from sklearn.model_selection import learning_curvedigits = load_digits()features, target = digits.data, digits.target# 使用交叉验证为不同规模的训练集计算训练和测试得分
train_sizes, train_scores, test_scores = learning_curve(RandomForestClassifier(),
features,
target,
cv=10,
scoring='accuracy',
n_jobs=-1,
train_sizes=np.linspace(0.01,1,50))# 计算训练集得分的平均值和标准差
train_mean = np.mean(train_scores, axis=1)
train_std = np.std(train_scores, axis=1)test_mean = np.mean(test_scores, axis=1)
test_std = np.std(test_scores, axis=1)plt.plot(train_sizes, train_mean, '--', color='black', label='Training score')
plt.plot(train_sizes, test_mean, color='black', label='Cross-validation score')
plt.fill_between(train_sizes, train_mean-train_std,
train_mean + train_std, color='#DDDDDD')
plt.fill_between(train_sizes, test_mean-test_std,
test_mean + test_std, color='#DDDDDD')
plt.title('learning_curve')
plt.xlabel('Training Set Size')
plt.ylabel('Accuracy Score')
plt.legend(loc='best')
plt.tight_layout()
plt.show()
from sklearn.metrics import classification_reportiris = datasets.load_iris()features = iris.datatarget = iris.targetclass_names = iris.target_namesfeatures_train, features_test, target_train, target_test = train_test_split(
features, target, random_state = 1)classfier = LogisticRegression()model = classfier.fit(features_train, target_train)
target_predicted = model.predict(features_test)# 生成分类器的性能报告
print(classification_report(target_test,
target_predicted,
target_names=class_names)) precision recall f1-score support
setosa 1.00 1.00 1.00 13
versicolor 1.00 0.94 0.97 16
virginica 0.90 1.00 0.95 9
accuracy 0.97 38
macro avg 0.97 0.98 0.97 38
weighted avg 0.98 0.97 0.97 38阅读量:2051
点赞量:0
收藏量:0